Просто зарядно устройство за Ni-Cd & Ni-Mh акумулатори

Това просто зарядно устройство е предназначено за зареждане на всички видове малогабаритни акумулатори ( Ni-Cd & Ni-Mh ). Дадената схема се отличава с простота,  надеждност, точно спазване на технологията на заряда и универсалност , която дава възможност само с подбор на няколко елемента да се получат различни режими на заряд. Особено е целесъобразно да се използува устройството при по-малки стойности на зарядния ток ( 20- 100 mA )  в режим на  бавен заряд . 
Преди експлоатация на устройството е необходимо точно да се изчислят напрежението в края на заряда и стойността на тока на заряд. Достатъчно точно стойността на изходното напрежение се изчислява като се умножат броя на елементите на акумулаторната батерия по 1.45
V .Стойността на зарядния ток се изменя в зависимост от състоянието на акумулатора. В началото на цикъла тока е най-голям, постепенно намалява и в края на заряда е не по-вече от 1/10 от капацитета на акумулатора в A/h . Този режим се счита за оптимален и дава възможност за се проведат по-вече от 700 цикъла на заряд-разряд при запазване параметрите на акумулаторната батерия в нормите дадени от производителя . Времето на заряд при този алгоритъм е обикновено от порядъка на 10 – 12 часа .
При показаните стойности схемата е разчетена за зареждане на акумулаторна батерия от 12
V / 2.5 A/h . Максималния ток на заряд не бива да превишава 220 – 230 mA , което се регулира помощта на резистора R1 . Трансформатора трябва да бъде с мощност не по-малка от 15 W като изходното му напрежение трябва да бъде с 4 – 5 V по-високо от максималното напрежение на акумулатора в края на цикъла на заряда. Ако зарядния ток  трябва да бъде по-голям от 0.25 А освен по стойност R1 трябва да се оразмери и по мощност . Наличието на напрежение се индицира от светодиода D3, а D2 показва наличие на  заряден ток . При желание могат да се използуват волтмер и ампермер за по-точно отчитане на зарядните величини . 

  Токозахранващ блок с LM317

     Показаната схема на токозахранващ блок е проста, надежна и не се нуждае от допълнителни настройки. За посочените стойности на елементите схемата осигурява изходно напрежение 1-36 V при ток на консумация до 700 mA. За входно напрежение (за LM317) се допуска не по-голямо от 40V. Изходния ток е ограничен на 1A. Работната температура не бива да превишава 100 градуса С.
      За токове на консумация по-големи от 200mA се препоръчва ИС да се монтира на радиатор с ефективна площ 300-400 mm2. Трансформаторът трябва да е с мощност не по-малка от 15W. Изходното му напрежение, т.е. входното на стабилизатора трябва да е с 10-15% по-голямо от необходимото на изхода на схемата. Като вариант посочената схема може да се използва като регулируем стабилизиран токозахранващ блок за лабораторни цели.

  Схема на токозахранващ блок за 3V с транзистори

     Напоследък се появиха доста устройства, работещи със захранващо напрежение от порядъка на 3V с малки токове на консумация. Да се направи токозахранващо устройство от подобен тип не е сложно и е по силите на всеки млад майстор...
     На рис. 1 е показана проста схема на токозахранващ блок за 3V (200mA) с автоматична електронна защита от претоварване, която сработва при токове на консумация по-големи от 250mA. Нивото на пулсациите на изходното напрежение не превишават 8mV . 
     За нормалната работа на стабилизатора входното му напрежение (след диодите VD1...VD4) може да бъде от  4,5 до 10 V, като най-добре е да е в диапазона 5...6 V. Така се намалява разсейваната мощност от транзистора  VT1 при максимални натоварвания на стабилизатора.
     В посочената схема за източник на опорно напрежение се използва светодиода  HL1 и диодите VD5, VD6. Светодиода същевременно служи и като индикатор за работещо устройство.
     За транзистора VT1 е необходимо да се предвиди малък радиатор.  А за трансформатор може да се използва всеки тип, който отговаря на посочените изисквания  (с вторично напрежение 5 - 6 V). 

  Токозахранващ блок за 3V с ИС

     Показаната схема също осигурява стабилизирано напрежение 3V, но за разлика от тази с транзистори за нормалната работа на ИС входното напрежение трябва да е най-малко с 3.5V по-голямо от изходното. Това естествено намалява КПД-то на стабилизатора за сметка на отделяната топлина от ИС. Затова при по-голям изходен ток е необходимо ИС да се монтира на подходящ радиатор, което донякъде повишава обема на устройството. Точната стойност на изходното напрежение се настройва с тримера R2. Показания вариант с ИС осигурява значително по-малки стойности на пулсациите на изходното напрежение (~1mV), което позволява да се използват филтриращи кондензатори с по-малък капацитет - съответно по-малки размери. Вместо посочената ИС може да се използват и други подобни - напр. LM317...

  Зарядно за NiCad батерии


Parts List
   B1 = Bridge Rectifier or four 1N4001 diodes 
   T1 = Transformer, 220V/30V, 500mA
D1,D2 = 1N4001
   Q1 = 2N3055 
   R1 = 2.7K, 5%, red-purple-red
   C1 = 470-680 uF
   P1 = 20 to 25 ohms, potentiometer
    M =  Meter, 0 to 200 mA (or use your multimeter)
The schematic for this charger is pretty simple. You can charge from 1 to 20 nicads at a constant current of from 20 to 200 ma . The circuit I modified from an article in July 1977 "73 Amateur Radio Magazine". The transformer can be anything from 24 volts (lower volts=fewer cells charged) up to 30 or so volts. The more volts the more cells you can charge. All diodes are 1N4001 or similar. The cap can be most anything around 500uf or greater. The meter can be any ammeter if you wind your own shunt. I've built and used 2 or them for years. Good luck!

  8 А зарядно

Parts List: Resistors are 1/4W, carbon, 5% tolerance (or better). R1 = 200 ohm IC1 = uA723 R2 = 10K, potentiometer Q1,Q2 = 2N3055, NPN power, TO-3 R3 = 1K BR1 = Bridge Rectifier or 4 Diodes, RSC = 0.065 ohm 10A, 100PIV C1 = 10,000uF/50V electrolytic T1 = Transformer, 117VAC-20VAC/10Amp C2 = 500pF, ceramic C3 = 100uF/25V electrolytic Description:
BR1 can be a bridge rectifier or four diodes (10A) with a 100 PIV rating.

A 10,000uF/50V electrolytic capacitor completes the filtering of the 28.8V. Yep, C1 is a real clunker. You can use larger if you like, just watch it when you power up. Without a 'power-up' delay circuit of sorts it will probably blow-up the 723 if the capacitor (C1) is too-large.

The DC voltage coming from BR1 is fed to the collectors of the in "Darlington" connected 2N3055 NPN power transistors. The base drive for the pairs transistors is coming from pin 10 of the uA723 through a 200 ohm current limiting resistor, R1.

The reference terminal, pin 6, is tied directly to the non-inverting input of the error amp (pin 5), providing 7.15V for comparison.

Inverting input to the error-amplifier on pin 4 is fed from the center arm of a 10K potentiometer connected across the output of the supply. This control is set for the desired output voltage of 13.8V. Compensation of the error-amplifier is accomplished with a 500pF capacitor connected between pin 13 and 4 of the 723.

If the power supply should exceed 8A or develop a short-circuit, the 723 regulator will bias the transistors to 'cutoff' and the output voltage will drop to near zero until the short circuit condition is corrected.

  Захранване от 1,2V-30V

Variable Power Supply

Parts List: BR1 = Bridge Rectifier *C1 = 1000uF/63V, electrolytic (see text) IC1 = LM317, adjustable regulator C3 = 0.1uF (100nF), ceramic V = Meter, 30V, Ri = 85 ohm C4 = 1uF/40V, electrolytic TR1 = Transformer 24VAC, 3A Plug = 3-wire plug & cord R1 = 1K8, 5% S1 = On-Off toggle switch R2 = 220 ohm, 5% D1 = 1N4001 R3 = 27K, 5% Fuse = 115V, 500mA, slow-blow P1 = 5K, potentiometer FuseHolder, enclosure, knob for P1 P2 = 10K, Bourns trim-pot Red & Black Banana Jacks, coolrib for IC1. KIT Available [CLICK HERE] Variable Power Supply, Regulated pin-out Description:
This is a simple, but low-ripple power supply, and an excellent project if you're starting out in electronics. It will suit your needs for most of your bench testing and prototype applications. The output is adjustable from 1.2 volts to about 30 volts. Maximum current is about 1.5 amps which is also sufficient for most of your tinkering. It is relatively easy to build and can be pretty cheap if you have some or all the required parts.
A printed circuit board is included farther down the page for those who like to make their own, but the whole thing can easily be build on perforated or vero board. Or buy one of Radio Shack/Tandy's experimenters boards (#276-150). The meter and the transformer are the money suckers, but if you can scrounge them up from somewhere it will reduce the cost significantly.
BR1 is a full-wave bridge rectifier. The two '~' denotes 'AC' and are connected to the 24vac output coming from the transformer. The PCB is designed for the MDA201 which is a 100V/2A type, the MDA201A is a 4A type. You can use anything you have in your junk-box with a minimum of 2A, but that is cutting it close. A 4 amp model would be a lot safer.
IC1 is a 3-pin, TO-220 model, but the TO-3 model can also be used. Be sure to put a cooling rib on IC1, at it's max 1.5 A current it quickly becomes very hot...
Most of the parts can be obtained from your local Radio Shack or Tandy store. The physical size of the power supply case depends largely on the size of the meter & transformer. But almost anything will do, even wood. Go wild. Have a beer with it.

Variable Power Supply, Regulated Circuit Description:
The 117VAC (or 220VAC) coming from the power-cord is fed to the transformer TR1 via the on-off switch and the 500mA fuse. The 24VAC output (approximately) from the transformer is presented to the bridge rectifier BR1, and here rectified from AC (Alternating Current) to DC (Direct Current). If you don't want to spend the money for a Bridge Rectifier, you can easily use four heavy duty, general purpose power diodes.
Whatever type transformer you get or purchase, make sure it does not exceed 24VAC. The LM317's max input voltage is 36V. 24VAC x 1.44pp = 34.56Vdc so right at the maximum edge. Better to obtain a transformer with a little less voltage and be safe. A 18VAC transformer will still give you about 26VDC and more then anyone hobbyist ever need. The amperage of the transformer should be 3A or so. That way it does not get hot.
The pulsating DC output from BR1 is filtered via the 2200uF capacitor (to make it more manageable for the regulator) and fed to 'IN'-put of the adjustable LM317 regulator (IC1). The output of this regulator is your adjustable voltage of 1.2 to 30 volts varied via the 'Adj' pin and the 5K potmeter P1. The large value of C1 makes for a good, low ripple output voltage.

Why exactly 1.2V and not 0-volt? Very basic, the job of the regulator is two-fold; first, it compares the output voltage to an internal reference (1.2V) and controls the output voltage so that it remains constant, and second, it provides a method for adjusting the output voltage to the level you want by using a potentiometer. Internally the regulator uses a zener diode to provide a fixed reference voltage of 1.2 volt across the external resistor R2. (This resistor is usually around 240 ohms, but 220 ohms will work fine without any problems). Because of this, the voltage at the output can not decrease below 1.2 volts, but as the potentiometer (P1) increases in resistance the voltage across it, due to the current from the regulator plus current from R2, its voltage increases. This increases the output voltage.

The circuit was modified to make C1 1000uF. It seemed more than enough for most applications. If you need more ripple filtering then you can replace C1's value for a larger one, like 2200uF. Or use two 1000uF in parallel. If you do, make *sure* the working voltage on each cap is the same, like 63V. Unlike values will make problems...
Trimpot P2 is to set the meter equal to the output voltage.

D1 is a general purpose 1N4001 diode, used as a feedback blocker. It steers any current that might be coming from the device under power around the regulator to prevent the regulator from being damaged. Such reverse currents (spikes) usually occur when devices are powered down. Basically, you can use any diode in the 1N400x series, it is not critical.
The 'ON' Led will be lit via the 1.8K (1800 ohm) resistor R1. The current through the led will be between 12 - 20mA @ 2V depending on the type and color Led you are using. You may need to modify the value of R1 depending on your type LED.
C2 is a 0.1uF (100nF) decoupler capacitor to filter out the transient noise which can be induced into the supply by stray magnetic fields. Under normal conditions this capacitor is only required if the regulator is far away from the filter cap, but I added it anyway. C3 improves transient response. This means that while the regulator may perform perfectly at DC and at low frequencies, (regulating the voltage regardless of the load current), at higher frequencies it may be less effective. Adding this 1 uF capacitor should improve the response at those frequencies.
R3 and the trimmer pot (P2) allows you to 'zero' your meter to a set voltage. The meter is a 30Volt type with an internal resistance of 85 ohms. I you have or obtained a meter with a different Ri (internal resistance) you will have to adjust R3 to keep the current of meter to 1mA. Just another note in regards this meter, use the reading as a guideline. The reading may or may not be off by about 0.75volts at full scale, meaning if your meter indicates 30 volts it may be in reality almost 30.75 volts or 29.25 volts. If you need a more precise voltage, then use your multimeter.

Construction:
Because of the few components you can purchase a small case or use whatever you have available.
I used a power cord from a computer and cut the computer end off. All computer power cords are three-prong. The ground wire, which is connected to the middle pin of the power plug is connected to the chassis. The color of the ground-wire is either green or green/yellow. It is there for your protection if the 110vac accidentally comes in contact with the supply housing (case). BE CAREFUL always to disconnect the powerplug when you working inside the chassis. If you choose to use an in-line, or clip-type fuseholder be sure to isolate it with heat shrink or something to minimize accidental touching.
I use perf-board (or Vero board) as a circuit board. This stuff is widely available and comes relatively cheap. It is either made of some sort of fiber material or Phenolic or Bakelite material. They all work great. Some Phenolic boards come with copper tracks already on them which will make soldering the project together easier.
I mounted the LM317T regulator on a heatsink. If you use a metal/aluminum case you can mount it right to the metal case, insulated with the mica insulator and the nylon washer around the mounting screw. Note that the metal tab of the LM317 is connected internally to the 'Output' pin. So it has to be insulated when mounting directly to the case. Use heat sink compound (comes in transparent, white, or pink color) on the metal tab and mica insulator to maximize proper heat transfer between LM317 and case/ or heatsink. Also, use non metalic stand-offs to mount the circuit board in a metal or aluminum case.

Drill the holes for the banana jacks, on/off switch, and LED and make the cut-out for the meter. It is best to mount everything in such a way that you are able to trouble-shoot your circuit board with ease if needed. One more note about the on-off switch S1, this switch has 110VAC power to it. After soldering, insulate the bare spots with a bit of silicon gel. Works great and prevents electrical shock through accidental touching.

Variable Power Supply, Regulated If all is well, and you are finished assembling and soldering everything, check all connections. Check capacitors C1 & C3 for proper polarity (especially for C1, polarity reversal may cause explosion). Hookup a multi-meter to the power supply output jacks.
Set the multi-meter for DC volts. Switch on S1 (led will light, no smoke or sparks?) and watch the meter movement. Adjust potentiometer P1 until it reads on your multi-meter 15Volts. Adjust trimpot P2 until the panel meter (if so installed) also reads 15volts. The panel voltmeter is optional.
When done, note any discrepancies between your multi-meter and the power supply meter at full scale (max output). Maybe there is none, maybe there is little, maybe there is a lot because of your choice of transformer but you will be aware of it. Just make sure your multimeter reading and panel meter read as close as possible.Good luck and have fun building!

PCB    Lay-out


Substitutes:
IC1: LM317T (TO-220), NTE956, ECG956
IC1: LM317K (TO-3), NTE970, ECG970
BR1: KBPC801, NTE5312, ECG5312
D1: 1N400x, NTE116, ECG116

Final Notes:
You can add two silicon diodes (1N400x in series) to the output of the LM317 to drop the final 1.2V, giving the full 0-30V range. I built a similar supply using the LM317, to supply a wafer coating spinner motor. The 1.2V kept the motor spinning at over 100rpm, which was unacceptable to the researcher, who needed to ramp the motor speed from 0-8krpm.
The LED remains lit after switching off the power and slowly bleeds off via electrolytic capacitor C1, this is normal.

  Зарядно устройство за Alcatel

           Так как корпус у блока питания литой, неразборный, для починки придется его распилить лобзиком или обычной пилой , а после починки склеить. Если все сделать красиво и не торопясь, то будет практически незаметно вмешательства. Провода питания разноцветные: Коричневый-плюс, Черный-минус .

          Сопротивление на выходе мощностью 1 Вт. Конденсаторы стоящие паралельно диодам необязательные, емкостью примерно 10 Пикофарад.